

Published on Web 11/22/2003

The Surprising Nitrogen-Analogue Chemistry of the Methyltrioxorhenium-Catalyzed Olefin Epoxidation

Dirk V. Deubel*

Swiss Center for Scientific Computing, ETH Zürich, 6928 Manno, Switzerland

Received October 15, 2003; E-mail: deubel@cscs.ch

For three decades, chemists have been searching for four-and five-membered metallacycles as organometallic intermediates in heteroatom-transfer reactions of d⁰ metal complexes with olefins.^{1,2} In 1970, Mimoun and co-workers³ reported the epoxidation of olefins with the molybdenum diperoxo complex $[Mo(O)(O-O)_2 (OPR_3)$] (R = N(CH_3)₂) and postulated a stepwise reaction mechanism via an "organometallacycle" III (metalla-2,3-dioxolane), whereas in 1972 Sharpless and co-workers4 suggested a concerted oxygen-transfer mechanism via transition state V (Figure 1). The long-standing controversy⁵ was still lasting when Herrmann and co-workers⁶ developed the industrial olefin epoxidation process based on methyltrioxorhenium (MTO) as the catalyst and hydrogen peroxide as the terminal oxidant, with rhenium peroxo complexes, $[Re(O)(O-O)_2Me]$ and $[Re(O)_2(O-O)Me]$, being active species.^{6c} The controversy on the reaction mechanism was solved with the help of the density functional theory (DFT): In 1998, Rösch and co-workers⁷ demonstrated the Sharpless mechanism to be strongly preferred. Recent studies^{8,9} showed the Sharpless mechanism to be favored for other peroxo complexes and substrates as well.

Aiming to design the first d⁰ metal complex that follows the Mimoun mechanism, we have performed a DFT study at the B3LYP level on the reaction of [Re(O)₂(O–NH)Me] (1) with ethylene.¹⁰ The idea behind the calculations was the fact that the isodesmic reaction, $H_2O_2 + NH_3 \rightarrow NH_2OH + H_2O$, is -24 kcal/mol exergonic, thus rendering any reaction involving the cleavage of an N–O bond thermodynamically less favorable than the corresponding O–O cleavage reaction. Direct nitrene transfer to the olefin (aziridination) from [Re(O)₂(O–NH)Me] would require N–O cleavage, whereas the competing formation of an organometallic rhena-2,3- or 3,2-oxazolidine¹¹ retains the N–O bond.

The free enthalpy profile displayed in Figure 2 shows that aziridination ($\Delta G_a = 40.8 \text{ kcal/mol}, 3$) is kinetically slightly more favorable than the formation of the rhena-2,3-oxazolidine via [2+2] addition of ethylene across the Re–N bond of [Re(O)₂(O–NH)-Me] ($\Delta G_a = 42.1 \text{ kcal/mol}, 9$). Direct oxene transfer (epoxidation, $\Delta G_a = 50.4 \text{ kcal/mol}, 4$) and the formation of a rhena-3,2-oxazolidine upon [2+2] addition of ethylene across the Re–O bond of [Re(O)₂(O–NH)Me] ($\Delta G_a = 48.8 \text{ kcal/mol}, 10$) have significantly higher barriers. The rhena-2,3-oxazolidine (12) and rhena-3,2-oxazolidine (13) are less stable than the reactants by only 6.8 and 11.3 kcal/mol, respectively. Figure 2 summarizes the free enthalpy profile of these reactions in red (with Re–O bond cleavage), blue (with Re–N bond cleavage), and green (reactions of [Re(O)₂(O–O)Me] as a reference).

The fragmentation of the rhena-2,3-oxazolidine ($\Delta G_a = 31.4$ (=38.2 - 6.8) kcal/mol, **15**) is faster than its formation and liberates ethylideneazane via sigmatropic cycloreversion rather than aziridine, indicating that this pathway could be experimentally distinguished from the Sharpless mechanism by a different product. Similarly, the fragmentation of the rhena-3,2-oxazolidine ($\Delta G_a = 36.1$ (=47.4 - 11.3) kcal/mol, **16**) does not give oxirane but acetaldehyde, which

Sharpless mechanism

Figure 1. Controversy on the mechanism of the olefin epoxidation with peroxo complexes.

is also the product of the rhena-2,3-dioxolane fragmentation. Although the fragmentation of the nitrogen-containing metallacycles involves N–O bond cleavage, these reactions are unimolecular and therefore entropically more favorable than the initial bimolecular reactions of $[Re(O)_2(O-NH)Me]$ with the olefin.

The calculations reveal an additional mechanism with a lower activation free enthalpy that also leads to the formation of an organometallic intermediate. Adam and co-workers12 demonstrated dioxiranes and carbonyl oxides to be different species. Mimoun's5a mechanistic proposals for the olefin epoxidation include 1,3-dipolar metal⁺-O-O⁻ species¹³ as potential precursors of metalla-2,3dioxolanes. Selke and Valentine¹⁴ reported the formation of a metalla-analogue carbonyl oxide upon ligand-induced opening of a ferric porphyrin η^2 -peroxo complex. However, Mo(VI) and Re-(VII) η^2 -peroxo complexes apparently give η^1 -peroxo species only upon protonation at the peroxo ligand.¹⁵ In contrast, we show the rhenaoxaziridine moiety of [Re(O)₂(O-NH)Me] to open with an activation free enthalpy of 16.8 kcal/mol (21). The ring-opening product [Re(O)₂(η^1 -O-NH)Me] (23), which is 5.5 kcal/mol less stable than the parent η^2 species, seemed to be a metalla-analogue imine oxide and undergoes a [3+2] cycloaddition with ethylene yielding the rhena-3,2-oxazolidine. The activation free enthalpy of 30.7 (=36.2 - 5.5) kcal/mol for the [3+2] cycloaddition (25) is smaller than those for the reactions of $[Re(O)_2(\eta^2-O-NH)Me]$ with ethylene. Figure 2 summarizes the free enthalpy profile of the reactions via η^1 species in magenta (with Re–O bond cleavage) and cyan (with Re-N bond cleavage).

Analysis of the Wiberg bond index matrix in natural atomic orbital (NAO) basis¹⁶ reveals the unexpected electronic structure of [Re(O)₂(η^1 -O-*N*H)Me]. The molecule should be considered a metalla-analogue nitrosonium ylide (**23b**) rather than a metalla-analogue imine oxide (**23a**, Figure 2). The Lewis structure **23b** is further supported by a relatively short N-O bond of 1.24 Å (as

Figure 2. Calculated free enthalpy profile for the reactions of $[\text{Re}(O)_2(O-\text{NH})\text{Me}]$ with ethylene. The profile for the reactions of $[\text{Re}(O)_2(O-O)\text{Me}]$ with ethylene is given in green for comparison. **23a** and **23b** are potential Lewis structures of the ring-opening product $[\text{Re}(O)_2(\eta^1-O-N\text{H})\text{Me}]$. A stable structure of an ethylene complex was not obtained.

compared to 1.41 Å in [Re(O)₂(η^2 -O–NH)Me], 1) and by NPA atomic partial charges.¹⁶

In summary, we have predicted a stepwise mechanism for the reaction of $[\text{Re}(\text{O})_2(\eta^2\text{-}\text{O}-\text{NH})\text{Me}]$ with ethylene that is more favorable than the concerted nitrene-transfer event. The stepwise mechanism proceeds via a novel $[\text{Re}(\text{O})_2(\eta^1\text{-}\text{O}-N\text{H})\text{Me}]$ species and an organometallic rhena-3,2-oxazolidine. Fragmentation of the organometallacyle gives acetaldehyde. These results stand in sharp contrast to the concerted mechanism of the olefin epoxidation with rhenium peroxo complexes.

Acknowledgment. The author thanks Michele Parrinello for support, the Fonds der Chemischen Industrie for a Liebig Fellowship, and the computing center at Marburg University, Germany, for providing additional resources.

Supporting Information Available: Computational details, calculated structures, and analysis of **1** and **23** (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Examples: (a) Rappé, A. K.; Li, S. J. Am. Chem. Soc. 2003, 125, 11188.
 (b) Chen, X.; Zhang, X.; Chen, P. Angew. Chem., Int. Ed. 2003, 42, 3798.
 (c) Deubel, D. V.; Frenking, G. Acc. Chem. Res. 2003, 36, 645 and refs cited therein.
- (2) Organometallacycles of late transition metal complexes are experimentally known, e.g.: (a) Sheldon, R. A.; van Doorn, J. A. J. Organomet. Chem. 1975, 94, 115. (b) de Bruin, B.; Peters, T. P. J.; Thewissen, S.; Blok, A. N. J.; Wilting, J. B. M.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. Angew.

Chem., Int. Ed. 2002, 41, 2135. (c) Szuromi, E.; Shan, H.; Sharp, P. R. J. Am. Chem. Soc. 2003, 125, 10522.

- (3) Mimoun, H.; Seree de Roch, I.; Sajus, L. Tetrahedron 1970, 26, 37.
- (4) Sharpless, K. B.; Townsend, J. M.; Williams, D. R. J. Am. Chem. Soc. 1972, 94, 295.
- (5) (a) Mimoun, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 734. (b) Sundermeyer, J. Angew. Chem., Int. Ed. Engl. 1993, 32, 1144.
- (6) (a) Herrmann, W. A.; Fischer, R. W.; März, D. W. Angew. Chem., Int. Ed. Engl. 1991, 30, 1638. (b) Herrmann, W. A.; Fischer, R. W.; Scherer, W.; Rauch, M. U. Angew. Chem., Int. Ed. Engl. 1993, 32, 1157. (c) Al-Ajlouni, A. M.; Espenson, J. H. J. Am. Chem. Soc. 1995, 117, 9243. (d) Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457.
- (7) Gisdakis, P.; Antonczak, S.; Köstlmeier, S.; Herrmann, W. A.; Rösch, N. Angew. Chem., Int. Ed. 1998, 37, 2211.
- (8) Deubel, D. V.; Sundermeyer, J.; Frenking, G. J. Am. Chem. Soc. 2000, 122, 10101.
- (9) Di Valentin, C.; Gandolfi, R.; Gisdakis, P.; Rösch, N. J. Am. Chem. Soc. 2001, 123, 2365.
- (10) Energies were calculated at the B3LYP/III+//II level, which includes large basis sets and a relativistic ECP at the metal. Only the isomers lowest in energy are shown. TS were verified by IRC calculations. For methodological details, see Supporting Information or: Deubel, D. V.; Schlecht, S.; Frenking, G. J. Am. Chem. Soc. 2001, 123, 10085. The formation of [ReO₂-(O-NH)Me] from MTO and NH₂OH is predicted to be 9.3 kcal/mol endergonic, and the formation of [ReO₂(O-O)Me] from MTO and H₂O₂ is predicted to be 1.7 kcal/mol endergonic.
- (11) In metallacycle nomenclature, we assign the highest priority to the metal. (12) Adam W. Dürr H. Haas W. Lohray B. Angew. Chem. Int. Ed. Engl.
- (12) Adam, W.; Dürr, H.; Haas, W.; Lohray, B. Angew. Chem., Int. Ed. Engl. 1984, 25, 101.
- (13) In η^1 species, the atom to which the metal is bound is shown in italics.
- (14) Selke, M.; Valentine, J. S. J. Am. Chem. Soc. 1998, 120, 2652.
- (15) (a) Deubel, D. V.; Sundermeyer, J.; Frenking, G. Org. Lett. 2001, 3, 329.
 (b) Gisdakis, P.; Rösch, N. Inorg. Chem. 2001, 40, 3755.
- (16) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. For details, see Supporting Information.

JA039066V